Header Ads

Header ADS

Density Functional Theory and the Family of (L)APW-methods: a step-by-step introduction


Stefaan Cottenier

1 Density Functional Theory as a way to solve the quantum many body problem 1
1.1 Level 1: The Born-Oppenheimer approximation . . . . . . . . . . . . . . . . . . 1 
1.2 Level 2: Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . 2 
1.2.1 The theorems of Hohenberg and Kohn . . . . . . . . . . . . . . . . . . . 2 
1.2.2 The Kohn-Sham equations . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
1.2.3 The exchange-correlation functional . . . . . . . . . . . . . . . . . . . . . 7 
1.3 Level 3: Solving the equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

2 The pseudopotential method (in brief) 11 

3 The APW method 15 

4 The LAPW method 21 
4.1 The regular LAPW method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 
4.2 LAPW with Local Orbitals (LAPW+LO) . . . . . . . . . . . . . . . . . . . . . 22 

5 The APW+lo method 25 
5.1 The ‘pure’ APW+lo basis set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 
5.2 Mixed LAPW/APW+lo basis sets . . . . . . . . . . . . . . . . . . . . . . . . . . 26 
5.3 APW+lo with Local Orbitals (APW+lo+LO) . . . . . . . . . . . . . . . . . . . 26 

6 The PAW method (in brief) 27 

7 Examples for WIEN2k 31 
7.1 Linearization energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 
7.1.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 
7.1.2 Interpreting input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 
7.1.3 Interpreting output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 
7.1.4 The -in1orig and -in1new options . . . . . . . . . . . . . . . . . . . . . 40 
7.1.5 high-lying local orbitals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 
7.2 Finding the best RmtKmax and k-mesh . . . . . . . . . . . . . . . . . . . . . . . 42 
7.2.1 Why do we need this? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 
7.2.2 General procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 
7.2.3 RmtKmax-values per element: overview . . . . . . . . . . . . . . . . . . . 48 
7.2.4 Translation of tests to other cells . . . . . . . . . . . . . . . . . . . . . . 48 

A Fourier transforms, plane waves, the reciprocal lattice and Bloch’s theorem 51 
A.1 Fourier transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 
A.2 Plane waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 
A.3 The reciprocal lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 
A.4 Bloch’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 

B Quantum numbers and the Density Of States 57 
B.1 Familiar examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 
B.2 Crystalline solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 

C The eigenvalue problem 63 
C.1 Eigenvalues and eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 
C.2 Basis transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 
C.3 A practical procedure to find eigenvalues and eigenvectors . . . . . . . . . . . . 66 

D Solutions of the radial part of the Schr¨odinger equation 69 

E The homogeneous electron gas 71 

F Functionals 73 
F.1 Definition and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 
F.2 Functional derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

To download the file click on the link below:

No comments

Powered by Blogger.